3.367 \(\int \cos (c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=433 \[ \frac{\sqrt{a+b} \left (3 a^2 (A+6 B)+2 a b (9 A-7 B)-2 b^2 (3 A-B)\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{3 d}+\frac{(a-b) \sqrt{a+b} \left (3 a^2 A-14 a b B-6 A b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b d}-\frac{b (3 a A-2 b B) \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d}-\frac{a \sqrt{a+b} (2 a B+5 A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}+\frac{a A \sin (c+d x) (a+b \sec (c+d x))^{3/2}}{d} \]

[Out]

((a - b)*Sqrt[a + b]*(3*a^2*A - 6*A*b^2 - 14*a*b*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqr
t[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b
*d) + (Sqrt[a + b]*(2*a*b*(9*A - 7*B) - 2*b^2*(3*A - B) + 3*a^2*(A + 6*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[
a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c +
 d*x]))/(a - b))])/(3*d) - (a*Sqrt[a + b]*(5*A*b + 2*a*B)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]
))/(a - b))])/d + (a*A*(a + b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/d - (b*(3*a*A - 2*b*B)*Sqrt[a + b*Sec[c + d*x]
]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.703233, antiderivative size = 433, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.226, Rules used = {4025, 4056, 4058, 3921, 3784, 3832, 4004} \[ \frac{\sqrt{a+b} \left (3 a^2 (A+6 B)+2 a b (9 A-7 B)-2 b^2 (3 A-B)\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 d}+\frac{(a-b) \sqrt{a+b} \left (3 a^2 A-14 a b B-6 A b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b d}-\frac{b (3 a A-2 b B) \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d}-\frac{a \sqrt{a+b} (2 a B+5 A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}+\frac{a A \sin (c+d x) (a+b \sec (c+d x))^{3/2}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

((a - b)*Sqrt[a + b]*(3*a^2*A - 6*A*b^2 - 14*a*b*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqr
t[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b
*d) + (Sqrt[a + b]*(2*a*b*(9*A - 7*B) - 2*b^2*(3*A - B) + 3*a^2*(A + 6*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[
a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c +
 d*x]))/(a - b))])/(3*d) - (a*Sqrt[a + b]*(5*A*b + 2*a*B)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]
))/(a - b))])/d + (a*A*(a + b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/d - (b*(3*a*A - 2*b*B)*Sqrt[a + b*Sec[c + d*x]
]*Tan[c + d*x])/(3*d)

Rule 4025

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4056

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int
[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)*Csc[e + f*x] + (b*B*(m + 1) + a
*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \cos (c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx &=\frac{a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\int \sqrt{a+b \sec (c+d x)} \left (-\frac{1}{2} a (5 A b+2 a B)-b (A b+2 a B) \sec (c+d x)+\frac{1}{2} b (3 a A-2 b B) \sec ^2(c+d x)\right ) \, dx\\ &=\frac{a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{b (3 a A-2 b B) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}-\frac{2}{3} \int \frac{-\frac{3}{4} a^2 (5 A b+2 a B)-\frac{1}{2} b \left (9 a A b+9 a^2 B+b^2 B\right ) \sec (c+d x)+\frac{1}{4} b \left (3 a^2 A-6 A b^2-14 a b B\right ) \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{b (3 a A-2 b B) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}-\frac{2}{3} \int \frac{-\frac{3}{4} a^2 (5 A b+2 a B)+\left (-\frac{1}{4} b \left (3 a^2 A-6 A b^2-14 a b B\right )-\frac{1}{2} b \left (9 a A b+9 a^2 B+b^2 B\right )\right ) \sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx-\frac{1}{6} \left (b \left (3 a^2 A-6 A b^2-14 a b B\right )\right ) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{(a-b) \sqrt{a+b} \left (3 a^2 A-6 A b^2-14 a b B\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 b d}+\frac{a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{b (3 a A-2 b B) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac{1}{2} \left (a^2 (5 A b+2 a B)\right ) \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{1}{6} \left (b \left (2 a b (9 A-7 B)-2 b^2 (3 A-B)+3 a^2 (A+6 B)\right )\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{(a-b) \sqrt{a+b} \left (3 a^2 A-6 A b^2-14 a b B\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 b d}+\frac{\sqrt{a+b} \left (2 a b (9 A-7 B)-2 b^2 (3 A-B)+3 a^2 (A+6 B)\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac{a \sqrt{a+b} (5 A b+2 a B) \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}+\frac{a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{b (3 a A-2 b B) \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [B]  time = 19.2888, size = 1146, normalized size = 2.65 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]*(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

((a + b*Sec[c + d*x])^(5/2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(3*a^3*A*Tan[(c + d*x)/2] + 3*a^2*A*b*Tan[(c +
 d*x)/2] - 6*a*A*b^2*Tan[(c + d*x)/2] - 6*A*b^3*Tan[(c + d*x)/2] - 14*a^2*b*B*Tan[(c + d*x)/2] - 14*a*b^2*B*Ta
n[(c + d*x)/2] - 6*a^3*A*Tan[(c + d*x)/2]^3 + 12*a*A*b^2*Tan[(c + d*x)/2]^3 + 28*a^2*b*B*Tan[(c + d*x)/2]^3 +
3*a^3*A*Tan[(c + d*x)/2]^5 - 3*a^2*A*b*Tan[(c + d*x)/2]^5 - 6*a*A*b^2*Tan[(c + d*x)/2]^5 + 6*A*b^3*Tan[(c + d*
x)/2]^5 - 14*a^2*b*B*Tan[(c + d*x)/2]^5 + 14*a*b^2*B*Tan[(c + d*x)/2]^5 - 30*a^2*A*b*EllipticPi[-1, -ArcSin[Ta
n[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c +
 d*x)/2]^2)/(a + b)] - 12*a^3*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d
*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 30*a^2*A*b*EllipticPi[-1, -Arc
Sin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c
 + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 12*a^3*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a
+ b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^
2)/(a + b)] + (a + b)*(3*a^2*A - 6*A*b^2 - 14*a*b*B)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt
[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(
a + b)] - 2*(9*a^2*b*(A - B) + 3*a^3*B - b^3*(3*A + B) - a*b^2*(9*A + 7*B))*EllipticF[ArcSin[Tan[(c + d*x)/2]]
, (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 +
b*Tan[(c + d*x)/2]^2)/(a + b)]))/(3*d*(b + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(5/2)*(1 + Tan[(c + d*x)/2]^2)^(
3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]) + (Cos[c + d*x]^2*(
a + b*Sec[c + d*x])^(5/2)*((2*b*(3*A*b + 7*a*B)*Sin[c + d*x])/3 + (2*b^2*B*Tan[c + d*x])/3))/(d*(b + a*Cos[c +
 d*x])^2)

________________________________________________________________________________________

Maple [B]  time = 0.639, size = 3215, normalized size = 7.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x)

[Out]

-1/3/d*(cos(d*x+c)+1)^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(30*A*sin(d*x+c)*cos(d*x+c)^2*(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin
(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*b+12*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^3+6*A*s
in(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipti
cF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+2*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))
*b^3+3*A*cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3*(cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-6*A*cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(
d*x+c),((a-b)/(a+b))^(1/2))*b^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*sin(d*x+c)-6*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3+12*B*cos(d*x+c)*EllipticPi((-1+cos(
d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*sin(d*x+c)+3*A*cos(d*x+c)^4*a^3-18*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*
a^2*b+18*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+3*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((
a-b)/(a+b))^(1/2))*a^2*b-6*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+18*B*sin(d*x+c)*cos(d
*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+14*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-1
4*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*
EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-14*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(
a+b))^(1/2))*a*b^2+3*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-6*A*sin(d*x+c)*cos(d*x+c)^2*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),((a-b)/(a+b))^(1/2))*b^3-3*A*cos(d*x+c)^3*a^3+6*A*cos(d*x+c)^2*b^3-2*B*b^3+14*B*sin(d*x+c)*cos(d*x+c)*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-6*A*cos(d*x+c)*b^3+2*B*cos(d*x+c)^2*b^3-3*A*cos(d*x+c)^2*a^2*b+14*B*cos(d*
x+c)^2*a*b^2-6*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3+18*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x
+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c)
,((a-b)/(a+b))^(1/2))*a^2*b+3*A*cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*(cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*b-6*A*cos(d*x+c)*sin(d
*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+
c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-18*A*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(
1/2))*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*b+18*A*
cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*a+30*A*cos(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c
),-1,((a-b)/(a+b))^(1/2))*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*sin(d*x+c)*b-14*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-14*B*cos(d*x+c)*sin(d*x+c)*(cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x
+c),((a-b)/(a+b))^(1/2))*a*b^2+3*A*cos(d*x+c)^3*a^2*b+6*A*cos(d*x+c)^3*a*b^2+14*B*cos(d*x+c)^3*a^2*b+2*B*cos(d
*x+c)^3*a*b^2-6*A*cos(d*x+c)^2*a*b^2-14*B*cos(d*x+c)^2*a^2*b-16*B*cos(d*x+c)*a*b^2+6*A*sin(d*x+c)*cos(d*x+c)^2
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/s
in(d*x+c),((a-b)/(a+b))^(1/2))*b^3+2*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3)/sin(d*x+c)^5
/(b+a*cos(d*x+c))/cos(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cos \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B b^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{3} + A a^{2} \cos \left (d x + c\right ) +{\left (2 \, B a b + A b^{2}\right )} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} +{\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right ) \sec \left (d x + c\right )\right )} \sqrt{b \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b^2*cos(d*x + c)*sec(d*x + c)^3 + A*a^2*cos(d*x + c) + (2*B*a*b + A*b^2)*cos(d*x + c)*sec(d*x + c)
^2 + (B*a^2 + 2*A*a*b)*cos(d*x + c)*sec(d*x + c))*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cos \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c), x)